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1 Introduction

In 1999, Randall and Sundrum (RS) discovered a new way of reconciling extra dimensions
with observation [1]. In their model, our Universe is a 3+1 dimensional brane living in a 4+1
dimensional bulk with a negative cosmological constant. The bulk solution is locally anti-de
Sitter space (AdS) and the direction transverse to the brane is non-compact. Nevertheless,
at low enough energy, perturbative Newtonian gravity is recovered on the brane at distances
large compared to the AdS length ` [1, 2].

Subsequently, there was considerable interest in examining whether the agreement with
4d gravity extends beyond perturbation theory. In particular, the question of whether or
not the RS model can reproduce the predictions of 3+1 dimensional General Relativity
concerning black holes has stimulated a lot of work [3]. To answer this question, it is
necessary to construct an exact solution in the RS model that describes a black hole local-
ized on the brane. Unfortunately, no satisfactory solution has been obtained analytically.
Numerical work [4] suggests the existence of such solutions, but only for black holes small
compared to `, for which one does not expect agreement with GR anyway.

The difficulties involved in constructing such a solution can be understood by appealing
to the AdS/CFT correspondence [5]. It has been argued [6] that AdS/CFT implies that
the RS model is equivalent to a 4d effective theory consisting of General Relativity coupled
to any matter fields present on the brane and a conformal field theory (CFT), specifically
N = 4 SU(N) super Yang-Mills at large N and strong coupling, with an ultraviolet cut-
off. The deviation from 4d GR is therefore attributed to the presence of this CFT: the
expectation value of the CFT stress tensor appears as an additional term on the r.h.s. of
the effective 4d Einstein equation. A RS black hole solution would be a quantum corrected
black hole solution of the 4d effective theory [7]. According to this picture, a black hole on
the brane would be expected to emit Hawking radiation into the CFT degrees of freedom
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and therefore would not be static [7, 8]. Hence the difficulty in obtaining, even numerically,
a RS black hole solution analagous to the 4d Schwarzschild solution has been attributed to
the fact that such a solution would necessarily be time-dependent. However, it has been
suggested that strong coupling effects may invalidate this argument [9].

One way in which progress has been made is to reduce the space-time dimensionality to
a 2+1 dimensional brane in a 3+1 dimensional bulk. In beautiful work, Emparan, Horowitz
and Myers (EHM) found an exact solution describing a black hole on a 2+1 dimensional
analogue of a RS brane [10]. However, vacuum GR in 2+1 dimensions does not admit
black hole solutions. From an AdS/CFT perspective, the existence of the EHM solution
arises from quantum “corrections” due to the dual CFT in 2+1 dimensions, which turn a
classical conical singularity into a regular horizon [7]. In later work, EHM allowed for a
negative induced cosmological constant on the brane [11]. In this case, they constructed
brane-world black hole solutions that reproduce many properties of black hole solutions of
2+1 dimensional GR with a negative cosmological constant. However, large black holes
are not localized on the brane in this model and therefore behave rather differently from
what is expected in the original RS model.

In this paper, we shall consider the original RS model with a 4+1 dimensional bulk.
We shall make progress by considering black holes that are static, spherically symmetric
(on the brane), and charged with respected to a Maxwell field living on the brane. In the
extremal limit, such a black hole would have zero temperature and therefore, in the dual
4d picture, would not Hawking radiate. Therefore one would expect a static solution to
exist in this case. Finding such a solution is still very difficult since the bulk will depend on
two coordinates.1 Therefore we make an additional simplification, which is to concentrate
on the near-horizon geometry of the black hole. In 4d GR, a static, spherically symmetric,
black hole of charge Q is described by the Reissner-Nordstrom solution which, in the
extremal limit, has near-horizon geometry AdS2×S2 where AdS2 and S2 have equal radii Q.

Our strategy is to write down the most general near-horizon geometry for the bulk
solution consistent with the symmetries. The bulk Einstein equation reduces to ODEs. An
important ingredient in solving these ODEs is regularity : the bulk must be non-singular.
The Einstein equation is straightforward to integrate numerically, yielding a 1-parameter
family of solutions. We then solve the Israel junction condition describing the gravitational
effect of the brane. This relates the single parameter in the bulk uniquely to the charge Q
on the brane. We then have a 1-parameter family of solutions labelled by Q.

The induced metric on the brane is AdS2 × S2, but with unequal radii L1 and L2 for
AdS2 and S2 respectively. For large Q/`, we shall show that

L2
1 = Q2 − 3`2

4
+ . . . , L2

2 = Q2 − `2

4
+ . . . (1.1)

where the ellipses denote terms subleading in Q/`. Hence we have agreement with classical
GR for large Q/`. Furthermore, from the bulk near-horizon geometry, we can determine

1Exact solutions for which the induced metric on the brane is an extremal black hole were constructed

in ref. [12]. However, the physical significance of these solutions (which involve non-trivial bulk fields other

than the metric) is unclear because they are not localized on the brane and are nakedly singular in the

bulk, just like the non-extremal solution of ref. [13].
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an important property of the full black hole solution, namely the entropy as a function of
charge. We find that that 5d Bekenstein-Hawking entropy is (taking Q > 0 henceforth)

S5 =
π`Q2

G5
− π`3

G5
log
(
Q

`

)
+ . . . , (1.2)

The first term is the usual 4d Bekenstein-Hawking entropy of an extremal RN black hole
(since G4 = G5/` in the RS model). Hence the entropy differs from the 4d result by a
logarithmic correction that is subleading for large Q/`. We can also determine the proper
length of the horizon in the direction transverse to the brane. This is

ρ0 = ` log
(
Q

`

)
+ ` log 2 + . . . (1.3)

Hence we find agreement with the behaviour ρ0 ∝ ` log(L2/`) predicted by EHM [10] using
an argument based on the instability of horizons with larger ρ0 [13].

These large Q results are obtained analytically by solving the Einstein and Israel
equations at large “radius” in the bulk. The numerical results are required only to confirm
that the solutions are globally regular.

Recall that, from the dual 4d perspective, our solution is a solution of the 4d Einstein
equations coupled to a Maxwell field and the strongly coupled CFT with UV cut-off `−1.
We can translate the above results into 4d language using `3/G5 = 2N2/π [5]. This gives

L2
1 = Q2− 3G4N

2

2π
+ . . . , L2

2 = Q2− G4N
2

2π
+ . . . , S5 =

πQ2

G4
− 2N2 log

(
Q

`

)
+ . . .

(1.4)
These results are in agreement qualitatively with previous analyses of quantum corrections
to black holes at weak coupling. In particular, 1-loop corrections to black hole entropy
arising from free conformally coupled fields give a logarithmic term [14].2 Ref. [15] has
studied the particular case of quantum corrections arising from a free massless scalar field
to the classical AdS2 × S2 solution. The Q-dependence of the corrections is the same
as we have found.3 In summary, our results are of the same form as arises from quantum
corrections due to O(N2) free conformally coupled fields. There is no indication that strong
coupling leads to qualitatively new physics.

We can also consider small black holes, i.e., ones with Q/`� 1. We find that L1, L2 ∼
(`Q2)1/3. The entropy behaves as S5 ∼ `Q2/G5, i.e., the same as for large black holes, but
with a smaller coefficient.

Finally, we note that some of our bulk solutions are asymptotically locally AdS, with
conformal boundary AdS2 × S2. The ratio of the radii of AdS2 and S2 corresponds to the
one free parameter in the bulk. We have found the only regular solutions preserving the
symmetries of AdS2×S2. Hence they must provide the gravitational solutions dual to the
vacuum state of N = 4 SYM in AdS2 × S2 for arbitrary radii.

2These results do not take account of the gravitational backreaction of the quantum matter whereas

ours do. However, this backreaction results in a constant shift in the 4d horizon area (as can be seen from

the formula for L2
2) which is subleading compared to the logarithmic term arising from the entropy in the

quantum matter fields.
3In ref. [15], the correction to L2

2 was O(1), as we have found, but there was no O(1) correction to L2
1.

This is probably just an “accident” that occurs for the particular case of a free scalar.
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2 Near-horizon geometry of charged braneworld black hole

2.1 The bulk

Consider a static brane-world black hole. It is natural to assume that the bulk will also be
static. In the bulk, the surface gravity is constant. Hence, by continuity, it will take the
same value on the brane. Therefore if the horizon is degenerate on the brane then it will
also be degenerate in the bulk. We can take a near-horizon limit. It was proven in [16]
that the near-horizon geometry of a static extreme black hole can be written in the warped
product form

ds2 = A(x)2dΣ2 + gab(x)dxadxb, (2.1)

where dΣ2 is the metric on a 2d Lorentzian space M2 of constant curvature (i.e. Minkowski,
or (anti)-de Sitter spacetime) and gab is the metric on a spatial cross-section of the horizon.
In general, the warped product structure is only local, but if the horizon is simply connected
then it is global [16]. In our case, we are interested in a spherical black hole on the brane.
The topology of the part of the black hole horizon lying on either side of the brane will be
a hemisphere of S3, i.e., a 3-ball, which is simply connected. Hence the metric on either
side of the brane is globally a warped product.

We now restrict attention to a spherically symmetric black hole, i.e., there is a SO(3)
symmetry with S2 orbits. We can then choose coordinates xa = (ρ, θ, φ) so that the
near-horizon geometry is

ds2 = A(ρ)2dΣ2 + dρ2 +R(ρ)2dΩ2, (2.2)

where A and R are non-negative functions. By rescaling A we can arrange for M2 to have
Ricci scalar 2k with k ∈ {−1, 0, 1}. The bulk Einstein equation is

Rµν = − 4
`2
gµν , (2.3)

where ` is the AdS radius of curvature. The near-horizon metric is cohomogeneity-1, so
the Einstein equation reduces to ODEs. Explicitly, these are:

k

A2
− A′2

A2
− 2A′R′

AR
− A′′

A
= − 4

`2
(2.4)

A′′

A
+
R′′

R
=

2
`2

(2.5)

1
R2
− R′2

R2
− 2A′R′

AR
− R′′

R
= − 4

`2
. (2.6)

Adding these equations gives the Hamiltonian constraint:

k

A2
+

1
R2

=
A′2

A2
+
R′2

R2
+

4A′R′

AR
− 6
`2
. (2.7)

In the bulk, compactness of the horizon implies that R(ρ) must vanish somewhere. We
can shift ρ so that this occurs at ρ = 0, with R(ρ) > 0 for ρ > 0. Smoothness at ρ = 0
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requires that A(ρ) has a Taylor series consisting of even powers of ρ and R(ρ) a Taylor
series consisting of odd powers of ρ, with

A(0) ≡ A0 > 0, R′(0) = 1. (2.8)

If k = 0 then there is no loss of generality in setting A0 = 1 so these “initial” data are
unique. However, if k = ±1 then we have a 1-parameter family of initial data for the
integration of the Einstein equation. Note that R is monotonically increasing in the bulk:
if it were not then R would have a local maximum, where R′ = 0, and evaluating (2.6) at
this point gives R′′ > 0, which is impossible at a local maximum.

We have not been able to determine the general solution of the above equations ana-
lytically. However, the behaviour for ρ� `, A0 can be determined by solving using a series
expansion:

A = A0 +
(
k

A0
+

4A0

`2

)
ρ2

6
+
(
−11k2

A3
0

− 40k
`2A0

+
16A0

`4

)
ρ4

1080
+ . . .

R = ρ+
(
− k

A2
0

+
2
`2

)
ρ3

18
+
(

53k2

A4
0

+
220k
`2A2

0

+
212
`4

)
ρ5

5400
+ . . . (2.9)

Some solutions of the above form have been discussed previously. If k = 0 then the solution
corresponds to the metric dual to the ground state of N = 4 SYM on R × S1 × S2 (with
fermions periodic on S1) obtained in ref. [17], although it is not written in a manifestly
Poincaré invariant form there. For k = +1, we can analytically continue M2 = dS2 to S2,
giving a Riemannian metric of the form discussed by Böhm, who proved that the above
method leads to complete metrics on R3 × S2 [18].

2.2 The brane

We take the brane to have action

Sbrane =
∫
d4z
√
−h
(
−σ − 1

16πG4
FijF

ij

)
, (2.10)

where σ is the brane tension, G4 is the Newton constant on the brane, and F is the
Maxwell field on the brane. We shall set the brane tension to the Randall-Sundrum value
σ = 3/(4πG5`), which gives G4 = G5/`. The Israel junction condition for a Z2-symmetric
brane is

Kij =
1
`
hij + `

(
Fi
kFjk −

1
4
hijF

klFkl

)
, (2.11)

where Kij is the extrinsic curvature of the brane and hij its induced metric. We assume
the brane is located at ρ = ρ0, so the induced metric on the brane is a product M2 × S2:

ds24 = L2
1dΣ2 + L2

2dΩ2, (2.12)

where
L1 ≡ A(ρ0), L2 ≡ R(ρ0) (2.13)
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are the radii of M2 and S2 respectively. We assume the Maxwell field to be spherically
symmetric. By a duality rotation we may take it to be purely electric, i.e.,

?4 F = QdΩ, (2.14)

where Q is the total electric charge:

Q =
1

4π

∫
S2

?F. (2.15)

Note that this will agree with the electric charge defined by a surface integral at infinity
on the brane in the full (asymptotically flat) black hole spacetime. We shall take Q ≥ 0
henceforth.

The Israel junction condition implies that we must keep the region 0 ≤ ρ ≤ ρ0 of the
bulk, and satisfy the boundary conditions

A′(ρ0)
A(ρ0)

=
1
`
− `Q2

2R(ρ0)4
,

R′(ρ0)
R(ρ0)

=
1
`

+
`Q2

2R(ρ0)4
. (2.16)

We can use these to evaluate the Hamiltonian constraint (2.7) at ρ = ρ0, giving

k

L2
1

+
1
L2

2

= −`
2Q4

2L8
2

, (2.17)

from which we deduce k = −1, so the metric on the brane is AdS2×S2, in agreement with 4d
GR. However, this equation also implies L1 < L2, so the S2 radius is greater than the AdS2

radius, in contrast to 4d GR (which predicts L1 = L2 = Q). Note that the geometric inter-
pretation of ρ0 is as the proper length of the horizon in the direction transverse to the brane.

2.3 The solutions

We take k = −1 henceforth. Our strategy will be to fix A0 and integrate the bulk Einstein
equations to determine A(ρ) and R(ρ). We do this by using the series expansions (2.9) to
fix initial data at ρ = ε� A0, ` (we can’t start at ρ = 0 because the equations are singular
there) and then evolve the solution using the second order equations (2.4) and (2.6). The
Hamiltonian constraint (2.7) is used to monitor the accuracy of the solution. We then
choose the two parameters ρ0 and Q so that the two components of the Israel junction
condition are satisfied. This will give a 1-parameter family of solutions.

We start by noting the existence of two special bulk solutions that can be determined
analytically. First, if A0 = `/2 we find

A ≡ `

2
, R =

`√
2

sinh

(√
2ρ
`

)
. (2.18)

The bulk metric is then AdS2 ×H3. The other special case has A0 = `, giving

A = ` cosh
(ρ
`

)
, R = ` sinh

(ρ
`

)
, (2.19)

– 6 –
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Figure 1. Bulk solutions for A0 = 0.05, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0 (from bottom to top on left plot,
from left to right on right plot, units ` = 1).

which is just AdS5 written in coordinates adapted to a foliation by AdS2×S2 hypersurfaces.
For the AdS5 solution, the Israel equation cannot be satisfied. For the AdS2×H3 solution
we find that the Israel equations are satisfied if

sinh

(√
2ρ0

`

)
= 1, Q =

`√
2
. (2.20)

We then have
L1 =

`

2
=

Q√
2
, L2 =

`√
2

= Q. (2.21)

Hence, for this (small) black hole, the near-horizon metric on the brane differs from the
corresponding solution in 4d GR only through the fact that the radius of the AdS2 is Q/

√
2

rather than Q.
Now we shall discuss more general values for A0. First we shall describe the qualitative

beheaviour of the bulk solution. The behaviour of A and R for different values of A0 is
shown in figure 1. We argued above that R must increase monotonically. For 0 < A0 < `/2,
we find that A decreases montonically, and vanishes at some finite value ρ = ρ1. R diverges
at ρ = ρ1. A calculation of the square of the Riemann tensor reveals that ρ = ρ1 is a
curvature singularity.

For A0 > `/2, we find that both A and R increase monotonically, and are proportional
to exp(ρ/`) for large ρ, indicating that the bulk solution is asymptotically locally AdS5

as ρ → ∞, with conformal boundary AdS2 × S2. The solution is topologically trivial.
On the conformal boundary, the ratio a of the radius of the AdS2 to that of the S2 is a
monotonically increasing function of A0, with a → 0 as A0 → `/2, a → ∞ as A0 → ∞,
and a = 1 for the AdS5 bulk (A0 = `). Our bulk solution must provide the gravitational
dual of the ground state of N = 4 SYM in AdS2 × S2 for arbitrary a (since it is the only
regular solution with the appropriate symmetries).

The Israel junction condition can be satisfied if, and only if, 0 < A0 < `, when it
determines ρ0 and Q in terms of A0. For 0 < A0 < `/2, we find ρ0 < ρ1, so the curvature
singularity at ρ = ρ1 is not present in the spacetime containing the brane. We find that ρ0

and Q are monotonically increasing functions of A0 which vanish as A0 → 0 and diverge

– 7 –
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3

4
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Ρo

Figure 2. Left: L2/Q (top), L1/Q (middle) and S5/S4 (bottom). Note that the first two curves
diverge at small Q. Right: ρ0, the proper length of the horizon transverse to the brane. (Units
` = 1.)

as A0 → `. Physically, it is more interesting to take Q, rather than A0 as the dependent
variable, and we shall do so henceforth.

Figure 2 shows how L1, L2 and ρ0 depend on Q. L1/Q and L2/Q both approach 1 for
large Q/`. Hence the induced geometry on the brane agrees with the prediction of 4d GR
for large black holes. ρ0 grows as ` log(Q/`) ≈ ` log(L2/`) for large Q, in agreement with
general expectations of brane-world black holes [10].

The Bekenstein-Hawking entropy of the solution is determined from the area of the
event horizon:4

S =
2π
G5

∫ ρ0

0
R(ρ)2dρ. (2.22)

The usual 4d Bekenstein-Hawking entropy of an extremal RN black hole of charge Q is

S4 =
πQ2

G4
=
π`Q2

G5
. (2.23)

For a large black hole, the integral in (2.22) is dominated by the contribution from ρ ≈ ρ0

(as anticipated in [10]), where R(ρ) ≈ L2 exp((ρ− ρ0)/`). We then find S ≈ S4 upon using
L2 ≈ Q. The ratio S5/S4 is shown in figure 2. It tends to 1 at large Q/`, demonstrating
agreement with 4d GR.

The behaviour for small and large black holes can be understood analytically, as we
show in the next two subsections.

2.4 Small black holes

For a black hole much smaller than the AdS scale `, we can neglect the cosmological con-
stant in Einstein’s equation. The only dimensionful parameter in the bulk is A0 so dimen-
sional analysis gives A = A0Â(ρ/A0) and R = ρR̂(ρ/A0) for some dimensionless functions
Â, R̂. The sum of equations (2.16) implies that ρ0 ∼ A0. Hence all lengths in the problem
scale as A0. The difference of equations (2.16) now implies that A0 ∼ (`Q2)1/3. Hence
L1, L2, ρ0 ∼ (`Q2)1/3, i.e., the black hole behaves like a 5d black hole of radius (`Q2)1/3.

4Note that taking account of the bulk on both sides of the brane contributes an overall factor of 2.
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Our numerical results are L1 ≈ 0.24(`Q2)1/3, L2 ≈ 0.66(`Q2)1/3, ρ0 ≈ 0.56(`Q2)1/3. We
also have S5 ∼ (`Q2)/G5 ∝ S4, just as for a large black hole, however the coefficient is now
smaller: S5/S4 ≈ 0.14.

2.5 Large black holes

Large black holes have A0 ≈ ` so if the brane were not present then the bulk solution would
be asymptotically locally AdS, and the metric would be close to the AdS5 metric (which
arises for A0 = `). We can calculate analytically many properties of these black holes by
solving the Einstein equation near the AdS2 × S2 conformal boundary of the spacetime.
The latter is specified by the ratio a of the radius of AdS2 to that of S2. The asymptotic
solution can be determined using the results of ref. [19]. Setting ` = 1, we find that

ds2 =
dr2

4r2
+A(r)2dΣ2 +R(r)2dΩ2, (2.24)

where

A(r) = a2

[
1
r

+
1
6

+
1

3a2
− 1

48

(
1− 1

a4

)
r log r+

(
5

288
+

1
36a2

+
5

288a4
+λ
)
r+. . .

]
(2.25)

R(r) =
1
r
− 1

3
− 1

6a2
+

1
48

(
1− 1

a4

)
r log r+

(
5

288
+

1
36a2

+
5

288a4
− λ
)
r + . . . (2.26)

The coordinate r is related to our previous coordinate ρ by

r = r0e
−2ρ (2.27)

for some constant r0. The conformal boundary is at r = 0. The asymptotic solution
involves an unknown constant λ which is to be determined by the requirement of bulk
regularity. The ellipses denotes terms that are subleading in r relative to the terms written
above. These are uniquely determined by a, λ.

Now assume that the brane is at r = ε. The extrinsic curvature is

Kijdx
idxj = K1dΣ2 +K2dΩ2, (2.28)

where

K1 = a2

{
1
ε

+
1
48

(
1− 1

a4

)
ε log ε+

[
1
48

(
1− 1

a4

)
− 5

288
− 1

36
a2 − 5

288a4
− λ

]
ε+ . . .

}
K2 =

1
ε
− 1

48

(
1− 1

a4

)
ε log ε+

[
− 1

48

(
1− 1

a4

)
− 5

288
− 1

36
a2 − 5

288a4
+ λ

]
ε+ . . . (2.29)

The Israel equation gives

K1

L2
1

= 1− Q2

2L4
2

,
K2

L2
2

= 1 +
Q2

2L4
2

, (2.30)

where L1 ≡ A(ε), L2 ≡ R(ε). Expanding the sum of these equations as a series in ε gives

a2 = 1− 3
2
ε+ . . . (2.31)

– 9 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
2

We then have
L2

1 =
1
ε
− 1 + . . . , L2

2 =
1
ε
− 1

2
+ . . . (2.32)

The difference of equations (2.30) gives

Q2 =
1
ε

+ 4λ− 1
4

+ . . . (2.33)

The constants λ and r0 must be fixed by bulk regularity. We explained above that there
is a 1-parameter family of regular bulk solutions hence λ = λ(a), r0 = r0(a). Note that
a → 1 as ε → 0. The unique regular bulk solution with a = 1 is the AdS5 solution. A
calculation reveals that this solution has λ = 0 and r0 = 4. This fixes the leading term in
the ε expansions of λ and r0:

λ|ε=0 = 0, r0|ε=0 = 4. (2.34)

Hence
Q2 =

1
ε
− 1

4
+ . . . (2.35)

Inverting this determines ε as a function of Q. Plugging this into the expressions for L1

and L2 then gives the solutions (1.1) presented in the introduction. We also have

ρ0 =
1
2

log
(r0
ε

)
=

1
2

log
(

1
ε

)
+ log 2 + . . . (2.36)

Eliminating ε using (2.35) then gives the solution (1.3).
The Bekenstein-Hawking entropy is

S5 =
π

G5

∫ r0

ε

R(r)2

r
dr, (2.37)

Differentiating with respect to ε, then using the above series solution for L2 = R(ε) gives

dS5

dε
=

π

G5

(
− 1
ε2

+
1
2ε

+ . . .

)
, (2.38)

Integrating, then writing ε in terms of Q gives (1.2).
It would be nice to characterize the form of the next-to-next-to leading order (NNLO)

corrections to our results. To do so would require determining the dependence of λ and
r0 on ε, which we are unable to do analytically. However, our numerical results suggest
strongly that the NNLO terms in L2

1, L2
2 are5 O(logQ/Q2), in ρ0 the NNLO term is

O(1/Q2) and in S5 it is a constant ≈ −1.4`3/G5.
In summary, we can calculate many properties of large black holes analytically. The

numerical and analytical results are in excellent agreement. This analytical approach alone
would not be a satisfactory derivation of the behaviour of large black holes because it does
not demonstrate that a regular bulk solution actually exists. Demonstrating regularity
requires the numerical work above. However, having verified that a regular solution does
indeed exist, this analytical approach provides an explanation of its properties.

5This differs from the O(1/Q2) reported in ref. [15] for quantum corrections to AdS2 × S2 arising from

a free scalar. This may be because our effective 4d theory involves an interacting CFT.
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3 Discussion

Our results provide the first quantitative demonstration that the single brane RS model
can reproduce the predictions of 3+1 dimensional GR for black hole physics, for black holes
large compared to the AdS scale.

We have considered a black hole charged with respect to a Maxwell field on the brane.
However, note that our bulk solution is independent of what kind of matter field is present
on the brane. Hence the near-horizon geometry of any static, spherically symmetric, ex-
tremal black hole solution should have the same solution in the bulk (although possibly
with k = 0 or 1). It might be interesting to investigate other extremal black holes on the
brane e.g. with additional fields, or an induced cosmological constant on the brane. For
example, one could investigate the brane-world analogue of extremal Reissner-Nordstrom-
AdS or the Nariai solution (dS2×S2, which would need k = 1 so the bulk geometry would
be one of the solutions of ref. [18] analytically continued to Lorentzian signature).

As noted in the introduction, the only case in which analytic solutions describing
brane-world black holes are available is for a 3+1 dimensional bulk. The same is true for
near-horizon geometries of static extremal black holes. This is because the general static
near-horizon geometry solution of the Einstein equation (with cosmological constant) in
3+1 dimensions is known [20]. It is an analytically continued version of the Schwarzschild-
(A)dS metric. This metric could be used to construct the near-horizon geometry of static
extremal brane-world black holes on a 2+1 dimensional brane.

Note that we could not determine our bulk solution analytically (except in a special
case) and had to resort to numerical integration. This suggests that the harder problem of
finding the full bulk geometry of an extreme brane-world black hole also will not be possible
analytically. It would be interesting to see if this problem could be solved numerically using
the methods of ref. [4].

We have considered only static black holes. Constructing the near-horizon geometry
of an extreme rotating black hole on the brane (analagous to extreme Kerr) would be
interesting. However, the (near-horizon) bulk solution in this case would be cohomogeneity-
2 so finding it is probably as hard as finding a full solution for an extreme static, spherically
symmetric, brane-world black hole solution.

Our bulk solutions, multipled by S5, provide the geometries dual to the ground state
of (strongly coupled, large N) N = 4 SYM in AdS2 × S2 for arbitrary radii (or some
other CFT if S5 is replaced by another positive Einstein space X). The CFT stress tensor
can be calculated using the method of ref. [19]. (However, the result is renormalization
scheme dependent - it involves an arbitrary constant.) We expect that similar geometries
could be constructed that are dual to CFTs in M2 × S3, M3 × S2, M3 × S3, M2 × S4, and
M2 × S2 × S2, where Mp is a p-dimensional Lorentzian space of constant curvature.
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